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Schistosomiasis is a devastating parasitic disease caused by

flatworms of the genus Schistosoma. The complex life cycles

and developmental plasticity of these parasites have captured

the attention of parsitologists for decades, yet little is known on

the molecular level about the developmental underpinnings

that have allowed these worms to thrive as obligate parasites.

Here, we describe basic schistosome biology and highlight

how understanding the functions of stem cells in these worms

will transform our understanding of these parasites. Indeed, we

propose that schistosomiasis is fundamentally as disease of

stem cells. We hope this review will attract new interest in the

basic developmental biology of these important organisms.
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Introduction
Schistosomes infect more than 200 million of the world’s

poorest people [1]. These parasites claim the lives of

250,000 people annually [2], but the chronic disability

associated with infection robs millions more of the ability

to live healthy and productive lives, effectively condemn-

ing infected individuals to a life of poverty [3]. To put the

scope of this problem into perspective, some estimates

suggest that the global morbidity due to schistosome infec-

tion may reach levels rivaling diseases including malaria,

TB, and perhaps even HIV/AIDS [4]. Further, treatment of

schistosomiasis relies upon a single drug (praziquantel) and

it remains unclear how effective this drug will be in

eradicating this disease in the developing world [5].

While the effects of the schistosome infection are horrific

and new therapeutics are urgently needed, the rich,
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fascinating, and virtually unexplored biology of these

parasites should not be ignored. In fact, recent years have

seen important advances in schistosome biology, setting

the stage for major progress in understanding both the

organism and the disease. These advances include the

publication of the genomes of the schistosome species

that are major human pathogens [6–8], the development

of genetic tools to map mutations in the genome [9],

methods for RNA interference (RNAi) [10–12], tools for

robust whole-mount in situ hybridization [13,14��], a

growing set of tissue specific markers [14��,15], and

promising developments in the generation of transgenic

parasites [16,17]. There is even a National Institutes of

Health-supported Schistosomiasis Resource Center that

provides schistosome material and training to investiga-

tors free of charge [18]. Given these resources, basic

studies of these unique parasites are poised for a renais-

sance. Here we detail one emerging area of investigation

in these parasites: the biology of stem cells. Although few

molecular details about schistosome stem cells exist,

there is a great deal of evidence to suggest that these

cells are critical for the success of this organism as a

parasite. As such, we believe that schistosomes present

a fantastic model organism to ask basic questions about

stem cell behavior and regulation while simultaneously

addressing fundamental aspects of an important disease.

A primer on schistosome biology
Schistosomes are members of the phylum Platyhel-

minthes (flatworms) which includes a myriad of free-

living and parasitic taxa that inhabit most aquatic and

some humid terrestrial environments [19]. Perhaps the

most well-known flatworms are the free-living freshwater

planarians. Capable of regenerating following nearly ev-

ery type of injury, planarians employ a population of

pluripotent stem cells known as neoblasts that fuel not

only regeneration but also worm growth and tissue ho-

meostasis [20–22]. Studies of planarians date back over

one hundred years and with recent advances in molecular

tools, these worms have enjoyed a resurgence in their use

as model organisms for the study of regeneration and stem

cell biology [20]. Though planarians represent a fascinat-

ing model for regenerative and developmental biology,

the planarian’s parasitic relatives, the Neodermata,

should not be ignored. The Neodermata represent a

monophyletic clade that includes all three groups of

parasitic flatworms: the monogeneans, the cestodes and

the trematodes [23�,24]. The ability the Neodermata to

parasitize nearly every vertebrate on earth is due in large

part to their extreme developmental strategies. Mono-

geneans can develop like ‘Russian Dolls,’ with multiple

generations of worms developing inside a single mother
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[25]. Cestodes (tapeworms) can grow tens of meters

inside their host by perpetually adding new segments

to their body, with each segment possessing sexually

mature reproductive organs [19]. However, there are

few developmental feats that can eclipse the remarkable

life cycles exhibited by the trematodes.

Like all trematodes, the schistosome life cycle includes

both intermediate (snail) and definitive (mammalian)

hosts [19] (Figure 1). The life cycle begins when the
Figure 1
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eggs shed via urine or feces from an infected human

reach fresh water. These eggs hatch to release free-living

ciliated larvae, known as a miracidia, that proceed to

locate and invade a snail intermediate host. Once the

miracidium enters the snail, it undergoes a dramatic

developmental conversion, becoming another larval stage

known as the mother sporocyst. Each mother sporocyst

gives rise to hundreds of larvae, termed daughter spor-

ocysts. These daughter sporocysts eventually leave the

mother sporocyst and migrate to distal regions of the snail.
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Here the daughter sporocysts make the developmental

decision to produce either new generations of daughter

sporocysts or to produce another free-living stage called

cercariae. The cercariae will eventually burst out of the

snail into the water, where it finds the parasite’s definitive

host and burrows into its skin. Once in their definitive host,

these parasites enter the circulation and begin to develop as

either male or female parasites. The male and female

worms find each other within the host’s circulation, physi-

cally attach to one another, and then begin laying eggs.

When these eggs traverse the intestine or bladder and are

released from the host, the life cycle is completed.

Though this complex life cycle makes study of schistosomes

difficult, numerous techniques have been developed in

order to facilitate the study of the parasite. Eggs can be

cultured in vitro and induced to hatch into miracidia in vitro,

allowing study of this developmental transition. These mi-

racidia can then be either transformed into sporocysts in vitro
or used to experimentally infect snails, facilitating the study

of sporocyst development and maintenance. It is also possi-

ble to induce shedding of infective cercariae by simply

exposing infected snails to light. Shed cercariae can be

mechanically disrupted in order to transform into schistoso-

mulae in vitro. Alternatively, mice or other suitable hosts can

be experimentally infected with the shed cercariae, and all

stages within the definitive hosts can be studied.

If one considers the bizarre nature of this life cycle, it is

astounding that these parasites are so successful. In the

end, though, their success hinges on two striking devel-

opmental attributes: (1) the clonal expansion of sporo-

cysts and (2) the adult parasite’s prodigious reproduction

that is sustained over the course of several decades. Below

we briefly discuss what is known about each of these

developmental feats.

Unique stem cells amplify the schistosome’s
probability of infection
Once a miracidium invades a snail and begins producing

daughter sporocysts, it has a virtually never-ending capac-

ity to generate infective cercariae. Indeed, it appears that

the major factor limiting cercariae production in nature is

the life of the snail, since clonal populations of sporocysts

can be serially transplanted between snails for many

generations, long after the original donor snail would have

died [26]. The classic literature credits asexual amplifica-

tion to a population of cells called germinal cells [27,28].

Following the conversion of the miracidia to sporocysts,

these germinal cells begin a phase of rapid proliferation

before undergoing embryogenesis in the absence of fer-

tilization to generate hundreds of daughter sporocysts

[28,29,30��]. In these daughter sporocysts a similar phase

of germinal cell proliferation and embryogenesis ensues,

although this time the germinal cells are capable of

producing embryos for new generations of either daughter

sporocyts or cercariae [28,31,32] (Figure 2a).
www.sciencedirect.com 
So what are these germinal cells? Although much larger,

germinal cells morphologically resemble the neoblasts of

free-living flatworms: they have a high nuclear-to-cyto-

plasmic ratio, an open chromatin structure, and a large

nucleolus [33]. Recent studies also indicate that these

cells express factors characteristic of planarian neoblasts,

including Argonaute-family proteins and Vasa-like pro-

teins [30��]. Interestingly, it was shown that the germinal

cells of mother sporocysts exist as two molecularly dis-

tinct cell populations which proliferate at different rates.

Some germinal cells express a homologue of the RNA-

binding protein Nanos while others do not. EdU pulse

experiments demonstrated that nanos� germinal cells

proliferate much more rapidly than those that are

nanos+. The two populations of germinal cells also possess

different requirements for canonical stem-cell mainte-

nance factors. Depletion of a vasa-like gene results in a

complete loss of both nanos+ and nanos� germinal cells

whereas loss of ago2, an argonaute homolog, only depletes

the rapidly proliferating nanos� germinal cells [30��].
While the precise fate of these two populations is not

known, it could be that one population serves in a ‘stem

cell-like’ role whereas the other may represent differen-

tiated progeny, committed to producing the next genera-

tion of sporocysts. This bizarre asexual ‘polyembryony’

raises fundamental questions: what molecular programs

regulate germinal cell self-renewal and differentiation?

Do germinal cells only produce embryos or are these cells

able to participate in sporocyst tissue homeostasis and/or

regeneration? On a molecular level, do these cells share

more in common with somatic stem cells, germ cells, or

early embryonic cells? What distinguishes between the

germinal cells in the mother sporocyst and in the daughter

sporocyst? What is the nature of the schistosome ‘germ

line,’ and is it specified in sporocysts, in cercariae, or

during adult maturation? Indeed, the ability of the ger-

minal cells inside of the mother sporocyst to proliferate

clonally and give rise to seemingly totipotent daughter

sporocysts is an astounding developmental feat that war-

rants further investigation. With the emerging tool kit to

study sporocyst development (RNAi, in situ hybridiza-

tion) there are tremendous opportunities to address this

unique and important biology.

Neoblast-like adult stem cells likely promote
schistosome longevity in vivo
To ensure the continuity of the life cycle, the female

schistosome has evolved as a veritable egg-laying ma-

chine, capable of producing an egg every one-minute to

five-minutes [29]. Although sustained egg production is

key to the parasite’s success, it is paradoxically the central

driver of pathology. In order to complete the parasite’s life

cycle, the eggs must pass from the host’s circulation into

the host’s excretory system (either into the lumen of the

bladder or into the lumen of the intestine). Despite this,

as many as half of the parasite’s eggs are never excreted

from the host and continue to reside in the vasculature
Current Opinion in Genetics & Development 2016, 40:95–102
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Figure 2
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Roles for stem cells in schistosome asexual amplification and adult tissue homeostasis. (a) The germinal cells in the mother sporocyst are capable

of giving rise to the daughter sporocysts, and germinal cells in the daughter sporocyst are capable of giving rise to more daughter sporocysts as

well as infective cercariae. (b) The adult neoblasts are capable of self-renewing and giving rise to endodermal (intestinal), mesodermal (muscle),

and ectodermal (tegumental) lineages.
where they eventually deposit in the host’s organs (e.g.

liver or bladder), evoking potent inflammatory responses

that can lead to hepatic fibrosis, portal hypertension,

splenomegaly, and in some cases, even cancer [34,35].

In fact, parasites incapable of egg production produce no

significant pathology in their host.

In conjunction with their robust egg production, schisto-

somes are also capable of surviving for decades inside

their host; the literature is rife with cases of patients

harboring reproductively active schistosomes 20–30 years

after leaving endemic regions [36–38]. How these para-

sites flourish for years in what has been described as the

‘most hostile environment imaginable [39]’ (i.e., the

host’s circulation) remains an open question. It has re-

cently been suggested that the schistosome’s longevity

may be due in part to a population of previously unchar-

acterized somatic stem cells [14��]. By labeling adult

parasites with thymidine analogs, it was demonstrated

that these cells have the capacity for both self-renewal

and differentiation. These cells, like the germinal cells in

sporocysts, also appear to resemble planarian neoblasts.

Like planarian neoblasts, the schistosome’s proliferative

somatic cells possess classic neoblast morphology, are

restricted to the mesenchyme, and are not present in
Current Opinion in Genetics & Development 2016, 40:95–102 
differentiated tissues [14��]. Similar to the sporocyst

germinal cells, the adult somatic stem cells express factors

characteristic of planarian neoblasts such as an argonaute

homologue and fibroblast growth-factor receptors [14��].
Interestingly, genes encoding ‘germline’-associated post-

transcriptional regulators that typify planarian neoblasts

(i.e., PIWI, VASA, TUDOR) appear to be absent from

schistosomes [14��]. Instead schistosome neoblasts

expresses a homolog of the germline-associated post-

transcriptional regulator nanos [14��] that does not appear

to be associated with planarian neoblasts. Although the

function of these schistosome neoblast-expressed factors

remains largely unexplored, one fibroblast growth-factor

receptor, fgfra, is ubiquitously expressed in somatic stem

cells (as demonstrated by EdU incorporation and FISH)

and is required for their maintenance [14��]. Through

pulse-chase experiments with the thymidine analog EdU

it has been shown that schistosome neoblasts are capable

of differentiating into mesoderm-derived muscle cells

and endoderm-derived gut cells [14��]. In more recent

work examining the transcriptional profile of post-mitotic

neoblast progeny it appears the neoblast’s primary role is

contributing new cells to the schistosome’s surface coat, a

structure called the tegument [40��] (Figure 2b). The

tegument is an uninterrupted syncytium covering the
www.sciencedirect.com
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entire outer surface of the schistosome (and all other

Neodermata) [39,41]. Since it serves as the primary barri-

er between the parasite and the host’s circulation, the

tegument is presumed to be a key evolutionary adaptation

for immune evasion in schistosomes [39,41]. As such, the

observation that neoblasts are important for the mainte-

nance of the tegument suggests that further studies on

this neoblast-to-tegument differentiation process could

provide new insights into how these parasites evade the

host immune system. Presently, the tools to study these

worms are limited to in vitro approaches, but technologi-

cal advances will soon allow perturbation of neoblast

function and examination of the consequences on the

parasite in the context of a natural infection.

Regeneration and developmental plasticity in
adult schistosomes
The presence of neoblasts in adult schistosomes begs the

question: can these parasites regenerate following ampu-

tation, similar to planarians? Unfortunately, since in vitro
culture systems fail to fully replicate the parasite’s niche

inside their host, this is a very challenging question to

answer definitively, and conflicting reports exist. In 1956,

Alfred Senft and Thomas H. Weller (the latter of whom

won the Nobel Prize in Physiology or Medicine for

culturing the polio virus) reported posterior regeneration

of four amputated worms over the course of 10–20 days in

in vitro culture [42]. However, this result conflicts more

modern studies where in vitro cultured parasites were able

to rapidly heal wounds but failed to regenerate following

amputation [43]. Studies in our own lab have also failed to

observe the regeneration of amputated parasites cultured

in vitro (J Collins, unpublished communication). While

these conflicting observations could be chalked up to

differences in in vitro culture conditions, from an evolu-

tionary standpoint it is not clear why schistosomes would

possess the ability to regenerate following amputation

since they would never encounter this type of insult in the

host. A more systematic examination of the response of

schistosomes to various types of physical wounding may

yield interesting results.

Even though adult schistosomes are unlikely to experi-

ence insults mimicking amputation in vivo, they are likely

to be on the receiving end of a barrage of chemical and

cellular insults (e.g., xenobiotic stress or immune attack).

In support of this idea, the literature suggests schistosomes

can initiate regenerative responses following these types

of toxic stimuli. For instance, treatment of schistosome-

infected mice with sub-curative doses of praziquantel

results in severe damage to the parasite’s tegumental

surface, tegumental cell bodies, and underlying tissues

[44] (Figure 3a). Although structures on the tegumental

surface (e.g., spines) are slow to be repaired, tegumental

cell bodies and mesenchymal tissues return to normal

within one to two weeks [44]. These observations

not only point to the regenerative potential of adult
www.sciencedirect.com 
schistosomes, but they also implicate the parasite’s regen-

erative response as a potential mechanism by which

parasites could evolve resistance to drugs like praziquan-

tel. The role of neoblasts in the regenerative response to

praziquantel is not currently known. However, if neoblasts

are found to contribute to this regenerative response, one

could imagine targeting neoblasts as a means to enhance

the effectiveness of drugs like praziquantel in the treat-

ment of schistosomiasis [34].

In addition to mounting regenerative responses to inju-

ry, schistosomes have also evolved sophisticated pro-

grams which allow them to match their developmental

trajectories with their surroundings in the host’s circula-

tion. For instance, schistosomes grown in certain immu-

nodeficient mice (e.g., RAG-1�/�) are developmentally

stunted, incapable of mating, and thus produce few eggs

[45�] (Figure 3b). This would appear counter intuitive,

since one would anticipate that a fully functional im-

mune system would be an impediment to parasite sur-

vival within the host. However, this is likely a strategy to

ensure reproductive success. Schistosome eggs must

pass from the blood through the endothelium and into

the lumen of either the intestine or the bladder, and this

process appears to depend on a functional host immune

response [46,47]. Thus, by sensing the immune status of

their host and adjusting their developmental outputs

accordingly, schistosomes can avoid producing eggs

when it is unlikely that they would be capable of passing

into the environment and completing the lifecycle.

Schistosomes also control their development based on

the presence or absence of worms of the opposite sex. It

was observed nearly a hundred years ago that female

parasites from infections containing no male worms are

small in stature and their reproductive organs are unde-

veloped [48�] (Figure 3c). Interestingly, this develop-

mental arrest is reversible, since the hypotrophic

reproductive organs of female parasites deprived of their

male counterpart regenerate if pairing with a male is

reestablished [49]. Unfortunately, there are few mecha-

nistic details that explain how either the host immune

system or female pairing-status regulates parasite devel-

opment. We hypothesize that the regulation of stem cell

behavior (i.e., proliferation and differentiation) plays a

key role in these processes and represents yet another

aspect of basic stem cell biology ripe for study in this

pathogen.

Concluding remarks
Stem cells are clearly playing several important roles the

biology of these parasites. As alluded to above, an emerg-

ing theme in the studies of somatic stem cells from

schistosomes is that these cells share multiple fundamen-

tal similarities to the neoblasts of free-living flatworms,

most notably planarians [14��,30��]. Since neoblast-like

cells play central roles in the complicated life cycles of not

only schistosomes but also in a variety of other parasitic
Current Opinion in Genetics & Development 2016, 40:95–102
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Figure 3
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Examples of regeneration and developmental plasticity in adult schistosomes. (a) Schistosomes are able to at least partially regenerate their

tegument following sub-lethal praziquantel treatment. (b) Maturation and pairing of male and female schistosomes requires an intact immune

system. (c) Single-sex infection and unpairing of worms results in regression of reproductive organs in the female. This regression is reversible,

with restoration of reproductive machinery upon pairing with a male worm.
flatworms [50,51,52�], it is tempting to speculate that

neoblast-like stem cells were an important driver in the

evolution of parasitism in this group. A single planarian

neoblast has the capacity to generate every cell type in the

planarian [22]. One could not imagine a better develop-

mental template upon which to evolve the complex life

cycles of trematodes like schistosomes or the extreme

growth of tapeworms inside their hosts. Indeed, when

distilled down to its most essential components one could

argue that schistosomiasis (and other diseases caused by

flatworms) are fundamentally diseases of stem cells: the

germinal cells ensure the success of the lifecycle by

amplifying infectivity, the neoblasts promote parasite

longevity in the host resulting in chronic illness, and

the germ line stem cells generate eggs (and therefore

the pathology of the disease). Thus, by asking basic

questions about stem cell biology in schistosomes, we

can better understand this important disease while simul-

taneously expanding our knowledge of general stem cell

behavior and regulation. We hope that this line of think-

ing will attract new interest in studying these devastating,

albeit fascinating, parasites.
Current Opinion in Genetics & Development 2016, 40:95–102 
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