Cloning and Analyzing cDNA's from the Genome

By Jim Collins 9-10-15

Extract RNA: Trizol

(follow manufactures protocol)

DNase Treatment: Zymo DNA-free RNA kit

5 μ g RNA 5 μ l DNA Buffer 2.5 μ l DNase I to 25 μ l w/RNase Free H₂O 10 min at 37 °C

Purify on column

cDNA Synthesis: BioRad iScript Kit

4 μ l 5x iScript Mix (includes oligo dT and Random hexamers) 1 μ l Rev. Transcriptase 1 μ g DNA-Free RNA To 20 μ l with H₂0 Incubate on thermocycler: 5 min @ 25°C 30 min @ 42°C 5 min @ 85°C Dilute Rxn to 200ul with H₂O

PCR Amplification

Design primers to predicted coding regions using Primer 3 w/ 60°C annealing. 500-1000 bases is a good size for RNAi and in situ.

Reagents/RXN

2.5 μ l 10x Platnum Taq PCR buffer 0.5 μ l 10mM dNTPs 1.5 μ l 50mM MgCl₂ 1.0 μ l Forward Oligo (10 μ M) or 0.1 (100 μ M) 1.0 μ l Reverse Oligo (10 μ M) or 0.1 (100 μ M) 1.0 μ l cDNA 0.125 μ l Platnum *taq* To 25 μ l with H₂O

 PCR Conditions

 Step 1:
 4 min @ 95 °C

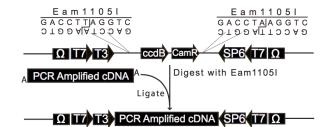
 Step 2:
 30 sec @ 95 °C

 Step 3:
 30 sec @ 55 °C

 Step 4:
 1 min @ 72 °C

 Step 5:
 Go to 2 39 times

 Hold at 4°C


Run on 1% Agarose Gel

Vector Preparation

Digest pJC53.2 (available from Addgene https://www.addgene.org/26536/) with Eam1105I, this leaves T-overhang

Digest

1 μ g pJC52.3 (enough for multiple cloning reactions) 1 μ l Eam1105l (Fermentas Fast Digest) 2.0 μ l FastDigest Buffer to 20 μ l with H₂0 Incubate 60 min at 37°C

Clean rxn with Zymo Clean and Concentrate Kit

Quantify and run ~50ng on Gel with PCR products. The digest should have two bands: 1600 (pJC53.2 insert ccdB and CamR) and 3200 (T-tailed vector). No further purification needed.

Ligation

4.0 μl unpurified PCR product 150 ng pJC53.2 (digested) to 10 μl with H_2O

10 ul 2x Rapid Ligation Buffer Mix Add 1 μ l NEB t4 DNA Ligase Incubate for ~30-60 min on bench

Transformation

5 μl Ligation 50 μl Competent DH5α Incubate on ice for 30 min, 90 sec heat shock at 42 °C, incubate on 2 min ice, add 1ml LB, shake for 1hr at 37 °C Plating whole transformation on kanamycin (or ampicillin) plate will give several hundred colonies

Colony PCR

For in situ analysis you want the T3 promoter to transcribe the anti-sense strand, so use forward primer and T3 primer to determine which clones have correct insert and orientation.

2.5 μ l 10x Platnum Taq PCR buffer 0.5 μ l 10mM dNTPs 1.5 μ l 50mM MgCl₂ 1.0 μ I Forward Oligo (10 μ M) or 0.1 (100 μ M) 0.1 μ l 100 μ M EY (GAA TTA ACC CTC ACT AAA GGG AGA CC, modified T3 Primer) 0.125 μ I Platnum *taq* To 25 μ I with H₂O

Pick colony with pipette tip and streak a small "line" on a labeled amp or kan plate. Drop pipette tip into the PCR mix. Pick 5 colonies for each transformation as a starting point.

Run gel and identify clones of interest by the presence of bands ~25 bp larger than was observed in original PCR. Pick clones for mini preps and submit for sequencing.

Sequence confirmed clones can be used for RNAi and/or Riboprobe synthesis with T3 RNAP.